

### КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ИМЕНИ АЛЬ-ФАРАБИ Физико-технический факультет Кафедра теоретической и ядерной физики



«Основы производства радиоактивных изотопов»

# Лекция 5. Радиоактивное мечение химических соединений.

и.о. доцента кафедры теоретической и ядерной физики PhD Зарипова Ю.А.

# МЕТОД РАДИОАКТИВНЫХ ИНДИКАТОРОВ использует МЕЧЕНЫЕ СОЕДИНЕНИЯ

Все радионуклиды существуют в какой-то химической форме. Химические соединения, имеющие в своем составе радионуклиды, называются мечеными соединениями.

Изотопная метка может быть и нерадиоактивной. Например, тяжелая вода — это вода, в которой атомы протия замещены на атомы дейтерия  $^2\text{H}_2\text{O}$  (D $_2\text{O}$ ).

### Меченые соединения

- химические соединения, в которых атомы одного или нескольких элементов имеют изотопный состав, отличающийся от природного.

1. Изотопно-замещённые (isotopically substituted)

14CH4

CH3-14COOH (14C) метан (1-14C) уксусная

кислота

<sup>14</sup>CH<sub>3</sub>-COOH (2-<sup>14</sup>С) уксусная кислота

<sup>2</sup>H-CH<sub>2</sub>-CH<sub>2</sub>-COOH  $(3-^2H_I)$  пропионовая

2. Изотопно-меченные (isotopically labeled)

| Тип                   | Написание формулы  СН <sub>3</sub> С[ <sup>2</sup> Н <sub>3</sub> ]  [1- <sup>2</sup> H <sub>3</sub> ] этан |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Специфично-меченные   |                                                                                                             |  |  |
| Селективно-меченные   | [1- <sup>2</sup> H]CH <sub>3</sub> CH <sub>3</sub><br>[1- <sup>2</sup> H] этан                              |  |  |
| Неселективно-меченные | [ <sup>2</sup> H]CH <sub>3</sub> CH <sub>3</sub><br>[ <sup>2</sup> H] этан                                  |  |  |
| Равномерно-меченные   | [U- <sup>2</sup> H]CH <sub>3</sub> CH <sub>3</sub><br>[U- <sup>2</sup> H] этан                              |  |  |
| Обще-меченные         | [G- <sup>2</sup> H]CH <sub>3</sub> CH <sub>3</sub><br>[G- <sup>2</sup> H] этан                              |  |  |
| Изотопно-дефицитные   | [def - <sup>2</sup> H]CH <sub>3</sub> CH <sub>3</sub><br>[def - <sup>2</sup> H] этан                        |  |  |

#### Как правильно написать название изотопно-замещенного соединения

<sup>14</sup>CH<sub>4</sub>

CH<sub>3</sub>-14COOH

<sup>14</sup>CH<sub>3</sub>-COOH

(<sup>14</sup>С)метан

(1-<sup>14</sup>C)уксусная

(2-14C) уксусная

кислота

кислота

CH<sub>3</sub><sup>2</sup>H

C<sup>2</sup>H<sub>2</sub>Cl<sub>2</sub>

CH<sup>2</sup>H<sub>2</sub>-CH<sup>35</sup>Cl-CH<sub>3</sub>

(<sup>2</sup>H<sub>1</sub>)метан

дихлор( ${}^{2}H_{2}$ )метан 2-( ${}^{35}CI$ )хлор( $1-{}^{2}H_{2}$ )пропан

#### CH<sup>2</sup>H<sub>2</sub>-CH<sub>2</sub>-COOH

(3-2H<sub>2</sub>)пропионовая кислота

#### Типы изотопно-меченных соединений

| Тип                                             | Написание формул и названия $C[^2H_3]CH_2CH_3$ $[1-^2H_3]$ пропан $[1-^2H]CH_3CH_2CH_3$ $[1-^2H]$ пропан $[^2H]CH_3CH_2CH_3$ $[^2H]$ пропан |  |  |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Специфично-меченные<br>Specifically labeled     |                                                                                                                                             |  |  |
| Селективно-меченные<br>Selectively labeled      |                                                                                                                                             |  |  |
| Неселективно-меченные<br>Nonselectively labeled |                                                                                                                                             |  |  |
| Равномерно-меченные<br>Uniformly labeled        | [U- <sup>2</sup> H]CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub><br>[U- <sup>2</sup> H]пропан                                             |  |  |
| Обще-меченные<br>Generally labelled             | [G- <sup>2</sup> H]CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub><br>[G- <sup>2</sup> H]пропан                                             |  |  |
| Изотопно-дефицитные<br>Isotopically deficient   | [def <sup>2</sup> H]CH <sub>3</sub> CH <sub>2</sub> CH <sub>3</sub><br>[def <sup>2</sup> H]пропан                                           |  |  |

#### Способы получения радионуклидов:

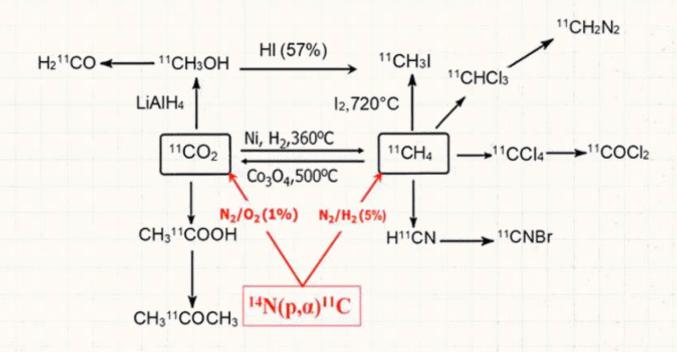
- 1. Выделение из природных объектов (полезных ископаемых и т.п.) уран, торий и продукты их распада;
- 2. Выделение из отработанного ядерного топлива трудная задача из-за многообразия радионуклидов и большой активности;
- 3. Облучение материалов в ядерном реакторе, реакция (n, γ);
- 4. Облучение мишеней на циклотронах потоками заряженных частиц (протоны, дейтроны, более тяжелые ядра), реакции (p, n), (d, n) и др.
- 5. Изотопные генераторы (из долгоживущего материнского нуклида генератора извлекают дочерний продукт).

#### Методы получения меченных соединений:

- 1. Химический синтез (основной для введения метки);
- 2. Изотопный обмен (простой и удобный способ ввести метку в нужную молекулу в одну стадию);
- 3. Биосинтез (специфичное выделение необходимой химической формы соединения);
- 4. Ядерно-химический методы:
  - а. «Горячий» синтез (метод атомов отдачи);
  - b. β-распад меченных соединений;
- 5. Физико-химические методы:
  - а. Фотолиз;
  - b. Химические ускорители и разряд;
  - с. Радиационно-химический синтез.

#### Чистота меченых соединений:

**Химическая чистома** – доля вещества в указанной химической форме. Выражается обычно в процентах.


**Радиохимическая чистома** – доля указанного нуклида в указанной химической форме.

Ядерно-физическая (радионуклидная) чистота — доля радиоактивности препарата, относящейся к указанному нуклиду, включая дочерние продукты. Химическая форма существования радионуклида не принимается во внимание.

| Радио-<br>нуклид           | Радиоактивность, МБк  |                |                 |                 |                |                 |  |  |
|----------------------------|-----------------------|----------------|-----------------|-----------------|----------------|-----------------|--|--|
|                            | в момент<br>получения | через<br>1 сут | через<br>15 сут | через<br>89 сут | через<br>1 год | через<br>2 года |  |  |
| <sup>35</sup> S            | 950                   | 943            | 845             | 475             | 55             | 3,2             |  |  |
| <sup>36</sup> CI           | 6                     | 6              | 6               | 6               | 6              | 6               |  |  |
| <sup>42</sup> K            | 44                    | 11             | 0               | 0               | 0              | 0               |  |  |
| всего                      | 1000                  | 960            | 851             | 481             | 61             | 9,2             |  |  |
| РНЧ<br>( <sup>35</sup> S ) | 95%                   | 98,2%          | 99,3%           | 98,8%           | 90%            | 35%             |  |  |

| Нуклид         | T <sub>1/2</sub> | Тип<br>расп.                | E <sub>max</sub> ,<br>MoB | Получение                                    | Р/акт.<br>на 1 моль |
|----------------|------------------|-----------------------------|---------------------------|----------------------------------------------|---------------------|
| <sup>3</sup> H | 12,3 лет         | β- 0,018 <sup>6</sup> Li(n, | β-                        | <sup>6</sup> Li(n,α)                         | 1,07 ПБк            |
| 14C            | 5730 лет         | β-                          | 0,16                      | <sup>14</sup> N(n,d)                         | 2,3 ТБк             |
| 32 <b>P</b>    | 14,3 сут         | β-                          | 1,71                      | <sup>31</sup> P(n,γ)<br><sup>32</sup> S(n,p) | 340 ПБк             |
| 33 <b>p</b>    | 25,4 сут         | β-                          | 0,25                      | <sup>33</sup> S(n,p)                         | 190 ПБк             |
| 35 <b>S</b>    | 87,5 сут         | β-                          | 0,16                      | 35Cl(n,p)                                    | 56 ПБк              |

| Нуклид Т <sub>1/2</sub> <sup>11</sup> С 20 мин |                    | Тип<br>распада | E <sub>max</sub> ,<br>MəB | Получение                                                              | Р/акт.<br>на 1 моль |
|------------------------------------------------|--------------------|----------------|---------------------------|------------------------------------------------------------------------|---------------------|
|                                                |                    | β+             | 0,96<br>(γ)               | <sup>14</sup> N(p,α)<br><sup>10</sup> B(d,n)<br><sup>11</sup> B(p,n)   | 340 ЭБк             |
| 13N                                            | 10 мин             | β+             | 1,19<br>(γ)               | <sup>16</sup> <b>O</b> ( <b>p</b> , α)<br><sup>12</sup> <b>C</b> (d,n) | 700 ЭБк             |
| 15 <b>O</b>                                    | 2 мин              | β+             | 1.74<br>(γ)               | <sup>14</sup> N(d,n)<br><sup>15</sup> N(p,n)                           | 3500 ЭБк            |
| 18F                                            | 109 мин<br>33 (3%) |                | 0,64<br>(γ)               | <sup>18</sup> O(p,n)<br><sup>20</sup> Ne(d,α)                          | 64 ЭБк              |



В 1,3,4,6-тетраацетил-О-ацетил-трифлат-β-D-маннопиранозе с помощью нуклеофильного радиофторирования трифлатная группа замещается на [¹8F]фторид с обращением конфигурации.

Синтез [18F] ФДГ

#### 6-[18F]-фтор-L ФДОФА

R = Boc, CHO

#### Ядерно-химический синтез

1. β-распад трития с составе <sup>3</sup>H<sub>2</sub>

$$^{3}\text{H}_{2} \stackrel{\beta}{\longrightarrow} \text{He}^{3}\text{H}^{+}$$

2. Передача заряда  $He^3H^+ + RH \rightarrow RH^+ + He^3H$   $He^3H^+ + ^3H_2 \rightarrow ^3H_2^+ + He^3H$ 

3. Диссоциация  $He^3H \rightarrow He + {}^3H$ 

4. Радиолиз

$$\sim \rightarrow RH \rightarrow RH^{+} + e^{-}$$
  
 $\sim \rightarrow {}^{3}H_{2} \rightarrow {}^{3}H_{2}^{+} + e^{-}$ 

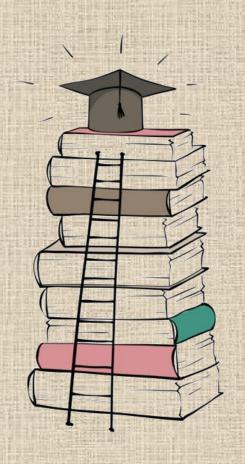
5. Ионно-молекулярные реакции  $He^3H^+ + RH \rightarrow R^3H^+ + He + H$   $RH^+ + ^3H_2 \rightarrow R^3H^+ + H^3H$ 

6. Радикальные реакции  $^{3}H + RH \rightarrow R \bullet + H^{3}H$   $R \bullet + ^{3}H \rightarrow R^{3}H$ 

$$T_{2} \xrightarrow{480-500^{0} \text{ C}} T_{2}O \xrightarrow{200^{0} \text{ C}} C_{2}T_{2} \xrightarrow{20^{0}\text{C}} C_{6}T_{6}$$

$$C_{6}T_{6} \xrightarrow{\beta^{-}} \left[C_{6}T_{5}^{3}\text{He}\right]^{+} \xrightarrow{C_{6}T_{5}^{+}} C_{6}T_{5}^{+} + {}^{3}\text{He}$$

$$C_{6}T_{5}^{+} + \text{El}(C_{6}H_{5})_{(8-N)} \xrightarrow{C_{6}T_{5}} \left[C_{6}T_{5}\text{El}(C_{6}H_{5})_{(8-N)}\right]^{+} \xrightarrow{An^{-}} \left[C_{6}T_{5}\text{El}(C_{6}H_{5})_{(8-N)}\right]^{+} An^{-}$$


$$C_{6}T_{5}^{+} + C_{6}H_{6} \xrightarrow{C_{6}T_{5}} C_{6}H_{5}$$

# Принципы радионуклидной диагностики



- 1. Введение в организм РФП, содержащих радиоактивные изотопы, испускающие гамма-излучение.
- 2. Регистрация гамма-излучения и получение изображения распределения РФП в организме.

## СПАСИБО ЗА ВНИМАНИЕ!

